

Subject:	
Academic Year:	
Lecturer:	
Number of periods per week:	
Number of total weeks:	

Machine Elements I – AMEM 316

Dr. Antonios Lontos 3+1* 14

Course Outline:

- General concepts on machine design such as stress and strength, stress concentration, Static strength, Plastic deformation.
- Fatigue, Theories of failure, Failure prevention, Static and dynamic strength of machine elements.
- Shafts, Shaft material and critical speeds, Keys and Couplings.
- Bearings, Bearing types, Lubrication and seals, Bearing load and life, Selection of ball and cylindrical roller bearing.
- Screws, Fasteners and Connections.
- Welded and Bonded Joints, Welding symbols, Stresses in welding, Static and fatigue loading, Specification set.
- Cams and Flywheels.

Assessment:

Final exam	60%
Coursework	40%

The passing mark is 50%. To pass the course you must get a 35% grade in both final exams and coursework.

Coursework:

Assignment 1: Shafts (November) Assignment 2: Bearings (December)

Note: The dates of the tests and assignments are likely to change slightly.

Grading system: Assignments 100%

Textbooks:

- Mechanical Engineering Design, Ch. R. Mischke, J. Edward Shigley, McGraw-Hill
- Fundamentals of Machine Elements, B. J. Hamrock, B. Jacobson, S. R. Scmid, Mcgraw-Hill

References:

- Design of Machine Elements and Machines by Jack A. Collins, George H. Staab, Henry R. Busby, John Wiley & Sons, 2002
- Machine Design: An Integrated Approach by Robert L. Norton, Robert L Norton, Prentice Hall, 2nd edition, 2000
- Machine Elements in Mechanical Design by Robert L. Mott, Prentice Hall, 3rd edition, 1998